If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2+5u-12=0
a = 4; b = 5; c = -12;
Δ = b2-4ac
Δ = 52-4·4·(-12)
Δ = 217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{217}}{2*4}=\frac{-5-\sqrt{217}}{8} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{217}}{2*4}=\frac{-5+\sqrt{217}}{8} $
| 6(1+3k)-9k=-39 | | x+5=2x-41 | | k^2-3k+1=-1 | | x—33=28 | | 45/16+3/2x=7/4x-19/6 | | x+5+x+25+2x-5=180 | | 2x+3x-10+2x+15=180 | | 7x+4(x-3)=2x-3 | | 7/5=-5/d | | x-15+x+15+2x=180 | | 7(6b+14)-3b=63 | | 4x-6=-7x+4+10x | | 5(3k-8)+4k=72 | | 3x+6=18x+45 | | 4(6y+6)-9y=92 | | 0=15y^2+26y+8 | | j^2-j-1=-1 | | x+(x*0.1)=144418.68 | | 7(3x+9)=72 | | 8(4-y)-1×1=15 | | 7-5x=1-4x | | x*(x*0.1)=144418.68 | | 4x(3x-7)-5(2x-4)=3x | | 17x-8=56 | | 8k=2(3k)+8 | | b^2+5b+12=70 | | 5y=3(4y)-6 | | 4y+3=-15+y | | 3x•2+10=190 | | 8k+9=45 | | 5x2+-28x+3=0 | | b3− 1= 3 |